final $R=\sum| | F_{o}\left|-\left|F_{c}\right| V \sum\right| F_{o} \mid=0.048$ for the 2093 observed reflexions. The final coordinates are given in Table 2. Fig. 1 gives bond lengths and angles and the atom numbering. Fig. 2 shows the packing.*

Discussion. Compared to the corresponding base, the main differences observed are the inversion of the oxyimino and carboxyl groups by half-rotation around $C(5)-C(7)$ (Table 3) and the coplanarity of the three groups aminothiazolyl, oxyimino and carboxyl (Table 4). This coplanarity allows the formation of an intramolecular hydrogen bond between the protonated $N(4)$ of the thiazolyl ring and $O(9)$ of the oxyimino group; moreover an interaction $[\mathrm{C}(6)-\mathrm{H}(61) \cdots \mathrm{O}(12)]$ occurs between the thiazolyl and carbonyl groups. This conformation leads to a close approach of $\mathrm{O}(13)$ and $N(8), 2 \cdot 548$ (5) compared to $2.90 \AA$ for the sum of the van der Waals radii (Pauling, 1960).

Each molecule is bonded to two neighbours by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}^{-}$bonds: $\mathrm{N}(3) \cdots \mathrm{Br}^{-}\left(x,-y+\frac{3}{2}, z-\frac{1}{2}\right)$ $3 \cdot 272(5), \mathrm{N}(3) \cdots \mathrm{Br}^{-}(-x+1,-y+1,-z+1)$ $3 \cdot 333$ (5) \AA.

We thank Dr J. Perronnet (Roussel-Uclaf, Romainville, France) for providing the sample.

[^0]Table 4. Deviations from coplanarity and angles between planes
Deviations (\AA)
(1) Plane through $\mathrm{S}(1), \mathrm{C}(2), \mathrm{N}(3), \mathrm{N}(4), \mathrm{C}(5)$ and $\mathrm{C}(6)$: aminothiazolyl group

$\mathrm{S}(1)$	-0.000	$\mathrm{~N}(4)$	-0.005
$\mathrm{C}(2)$	0.005	$\mathrm{C}(5)$	0.005
$\mathrm{~N}(3)$	-0.001	$\mathrm{C}(6)$	-0.003
	(e.s.d. $0.004 \AA$)		

(2) Plane through $\mathrm{C}(5), \mathrm{C}(7), \mathrm{N}(8), \mathrm{O}(9)$ and $\mathrm{C}(11)$: oxyimino group

$\mathrm{C}(5)$	-0.004	$\mathrm{O}(9)$	-0.002
$\mathrm{C}(7)$	0.015	$\mathrm{C}(11)$	-0.005
$\mathrm{~N}(8)$	-0.003		
	(e.s.d. $0.008 \AA$)		

(3) Plane through $\mathrm{C}(7), \mathrm{C}(11), \mathrm{O}(12)$ and $\mathrm{O}(13)$: carboxyl group

$\mathrm{C}(7)$	-0.001	$\mathrm{O}(12)$	-0.002
$\mathrm{C}(11)$	0.005	$\mathrm{O}(13)$	-0.002
		(e.s.d. $0.003 \AA$)	

Angles (${ }^{\circ}$)

Planes	This work	Corresponding base
$1-2$	0.6	13.4
$2-3$	5.5	77.1
$1-3$	$5 \cdot 3$	$82 \cdot 3$
	(e.s.d. $<0.3^{\circ}$)	

References

Laurent, G., Durant, F. \& Evrard, G. (1981). Acta Cryst. B37, 972-974.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 257. Ithaca: Cornell Univ. Press.
Sheldrick. G. M. (1976). SHELX 76 system of computing programs. Univ. of Cambridge, England.

$\mathbf{2 , 2} \mathbf{2}^{\prime}, \mathbf{4 , 4}, \mathbf{6}, \mathbf{6}^{\prime}$-Hexaisopropylazobenzene ${ }^{*} \dagger$

By Y. Le Page and E. J. Gabe
Chemistry Division, NRC, Ottawa, Canada K1A 0R9
and L. R. C. Barclay and J. M. Dust
Department of Chemistry, Mount Allison University, Sackville, New Brunswick, Canada

(Received 11 February 1980; accepted 8 December 1980)

Abstract

C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2}\), orthorhombic, Pbnn, $a=$ 5.9952 (6), $b=19.630$ (2), $c=23.929$ (2) \AA at 220 K giving $Z=4$ and $D_{c}=1.03 \mathrm{Mg} \mathrm{m}^{-3}$. At room temperature, the space group is the same and the cell

^[* Structures of Hindered Azobenzenes. II. + NRC No. 19079.]

parameters are approximately $6.016,19.68$ and $24.08 \AA$. At 115 K the sample is a monoclinic twin with $\gamma=90 \cdot 2^{\circ}$. The transition temperature of this reversible transformation is about 200 K . The crystals are yellow to orange needles elongated parallel to a and limited by the $\{010\}$ and $\{001\}$ forms. A twofold axis relates the two parts of the molecule which extends © 1981 International Union of Crystallography
along z. The final R_{F} value is 6.6% for 898 observed data.

Introduction. The structures of a series of hindered azobenzenes have been determined (Le Page, Gabe, Wang, Barclay \& Holm, 1980). The diffraction intensities of a rectangular parallelepiped crystal, 0.15 $\times 0.20 \times 0.35 \mathrm{~mm}$, of the title compound were measured.
Graphite-monochromatized $\mathrm{Cu} \quad K_{\alpha}$ radiation generated at 40 kV and 20 mA was used in a $\theta / 2 \theta$ scan with line-profile analysis (Grant \& Gabe, 1978). One unique set was collected up to $110^{\circ} 2 \theta$ giving 2114 unique measurements leading to 898 observed [I net $>3 \sigma(I$ net $)]$ and 888 unobserved reflections while only 1 out of the remaining 328 measurements of the systematic absences satisfied the observation criterion. No absorption correction was performed ($\mu=0.445$ mm^{-1}).

Table 1. Atomic parameters x, y, z and $B_{\text {iso }}$
The equivalent positions in Pbnn are $\pm\left(x, y, z ;-x, \frac{1}{2}+y, z ; \frac{1}{2}+x,-y\right.$, $\frac{1}{2}+z ; \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$. E.s.d.'s refer to the last digit printed. $B_{\text {iso }}$ is the arithmetic mean of the principal axes of the thermal ellipsoid.

	x	y	z	$B_{\text {iso }}\left(\AA^{2}\right)$
N	0.8393 (5)	$0 \cdot 12350$ (13)	0.23641 (12)	3.57 (17)
C(1)	$0 \cdot 8054$ (6)	$0 \cdot 12013$ (18)	0.17629 (13)	$3 \cdot 56$ (19)
C(2)	0.9326 (7)	$0 \cdot 16871$ (18)	$0 \cdot 14540$ (16)	4.54 (22)
C(3)	0.9088 (8)	$0 \cdot 16626$ (21)	0.08785 (16)	$6 \cdot 0$ (3)
C(4)	0.7801 (8)	0.11813 (23)	0.06137 (15)	$6 \cdot 5$ (3)
C(5)	0.6679 (7)	0.07047 (21)	0.09239 (15)	5.5 (3)
C(6)	0.6752 (6)	0.06979 (17)	0.15129 (14)	3.77 (20)
C(7)	1.0723 (7)	$0 \cdot 22222$ (20)	0.17497 (16)	5.48 (24)
C(71)	1.2921 (7)	$0 \cdot 23524$ (22)	$0 \cdot 14406$ (21)	$7 \cdot 8$ (3)
C(72)	0.9427 (8)	$0 \cdot 28807$ (24)	0.18257 (20)	8.7 (3)
C(8)	0.7560 (8)	$0 \cdot 1196$ (3)	-0.00313 (17)	10.9 (4)
C(81)	0.5582 (11)	$0 \cdot 1547$ (3)	-0.02133 (18)	12.5 (5)
C(82)	0.9249 (12)	0.0897 (3)	-0.03226 (19)	$13 \cdot 5$ (5)
C (9)	0.5564 (6)	0.01390 (18)	0.18258 (15)	$4 \cdot 18$ (21)
C(91)	0.3035 (7)	0.01894 (22)	$0 \cdot 17465$ (18)	$6 \cdot 5$ (3)
C(92)	0.6390 (7)	-0.05672 (19)	0.16495 (18)	7.0 (3)
H (7)	$1 \cdot 119$ (5)	0.2058 (13)	0.2138 (11)	$5 \cdot 0$ (9)
H(711)	1.356 (5)	0.2631 (15)	$0 \cdot 1664$ (12)	$6 \cdot 3$ (10)
H(712)	1.351 (6)	$0 \cdot 1862$ (17)	$0 \cdot 1310$ (15)	$10 \cdot 4$ (13)
H(713)	1.265 (7)	0.2746 (19)	$0 \cdot 1059$ (17)	13.5 (15)
H(721)	0.803 (5)	$0 \cdot 2734$ (15)	$0 \cdot 2002$ (13)	$8 \cdot 1$ (11)
H(722)	0.908 (6)	$0 \cdot 3045$ (17)	$0 \cdot 1454$ (16)	11.8 (14)
H(723)	1.059 (9)	0.3149 (21)	0.2069 (18)	18.8 (20)
H(823)	0.902 (6)	0.0893 (15)	-0.0743 (14)	9.0 (12)
H(811)	0.480 (9)	$0 \cdot 1905$ (21)	-0.0036 (22)	18.8 (19)
H(812)	0.550 (6)	$0 \cdot 1167$ (17)	-0.0144 (14)	9.8 (13)
H(813)	0.561 (8)	$0 \cdot 1592$ (19)	-0.0540 (18)	15.4 (17)
H(821)	1.054 (7)	0.0569 (19)	-0.0177 (16)	13.1(15)
H(822)	0.751 (7)	0.0372 (20)	-0.0184 (17)	16.0 (17)
H(8)	0.964 (11)	$0 \cdot 167$ (3)	-0.0229 (24)	28.3 (29)
H(9)	$0 \cdot 594$ (5)	$0 \cdot 0190$ (14)	0.2236 (11)	$6 \cdot 8$ (10)
H(911)	0.232 (6)	-0.0271 (17)	$0 \cdot 1907$ (14)	10.8 (12)
H(912)	0.261 (5)	0.0150 (15)	$0 \cdot 1357$ (13)	7.8 (10)
H(913)	$0 \cdot 267$ (7)	0.0728 (16)	$0 \cdot 1907$ (15)	12.4 (14)
H(921)	$0 \cdot 560$ (8)	-0.0973 (19)	0.1961 (17)	15.2 (16)
H(922)	$0 \cdot 792$ (5)	-0.0576 (13)	$0 \cdot 1752$ (11)	$5 \cdot 2$ (9)
H(923)	0.649 (7)	-0.0704 (19)	0.1291 (17)	14.6 (17)
H(3)	1.006 (6)	0.2065 (14)	0.0667 (12)	$5 \cdot 6$ (9)
H(5)	$0 \cdot 577$ (5)	0.0310 (13)	$0 \cdot 0769$ (10)	$4 \cdot 0$ (8)

The 16 non-hydrogen atoms were obtained with MULTAN (Germain, Main \& Woolfson, 1971). The H atoms were located on difference maps and their positional parameters were refined together with iso-

Fig. 1. Stereoscopic view of the skeleton of the molecule.

Fig. 2. Perspective drawings showing the distances (\AA) and angles $\left(^{\circ}\right)$. The standard deviations are $0.006 \AA$ and 0.4°.
tropic thermal parameters while the other atoms were refined anisotropically by block-diagonal least-squares calculations using counting-statistics weights. The scattering factors from Cromer \& Waber (1974) were used. The final residuals are $R_{F}=6 \cdot 6 \%$ and $w R_{F}=$ 4.4%. The atomic positional parameters are listed in Table 1.* All the calculations were performed using the NRC system of programs for the PDP8-E computer (Larson \& Gabe, 1978).

Discussion. The molecule (Fig. 1) extends along z while the two parts of the dimer are related by the twofold axis parallel to y and passing through the middle of the $\mathrm{N}=\mathrm{N}$ bond at $x=z=\frac{1}{4}$. The interatomic distances and angles except those involving H atoms are shown in Fig. 2. The high thermal motion observed at the $C(81)$ and $C(82)$ positions probably indicates some degree of disorder at these positions. Consequently the H atoms bonded to $C(8), C(81)$ and $C(82)$ are not considered to be located with certainty. Their refined positions are
*The tables of anisotropic thermal parameters, observed and calculated structure factors and distances and angles in the molecule have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35856 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
nevertheless given in Table 1. The average $\mathrm{C}-\mathrm{H}$ distance is $1.05 \AA$.

The 76.2° angle between the planes of the benzene rings is such that little interference occurs between the isopropyl groups on $C(2)$ and $C(6)$ and their equivalents on the symmetry-related part of the dimer. Consequently, contrary to what is observed in the hexa-tert-butyl derivative, the $\mathrm{C}(1)$ and N atoms lie approximately in the plane defined by the $C(2), C(3)$, $C(4), C(5)$ and $C(6)$ atoms.

The torsion angle between the $\mathrm{N}-\mathrm{C}(1)$ and $N^{\prime}-C\left(1^{\prime}\right)$ bonds is $174 \cdot 3^{\circ}$. A comparative study of the geometry of hindered azobenzenes will be reported separately.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, p. 99. Birmingham: Kynoch Press.
Germain, G., Main, P. \& Woolfson. M. M. (1971). Acta Cryst. A27, 368-376.
Grant, D. F. \& Gabe, E. J. (1978). J. Appl. Cry'st. 11 , 114-120.
Larson, A. C. \& Gabe, E. J. (1978). Computing in Crystallography, edited by H. Schenk, R. OlthofHazekamp, H. van K oningsveld \& G. C. Bassı, p. 81. Delft Univ. Press.
Le Page, Y., Gabe, E. J., Wang, Y., Barclay, L. R. C. \& Holm, H. L. (1980). Acta Crı'st. B36, 2846-2848.

$2, \mathbf{2}^{\prime}, \mathbf{4 , 4}, \mathbf{4}, \mathbf{6}^{\prime}-$ Hexamethylazobenzene* ${ }^{*} \dagger$

By E. J. Gabe and Yu Wang Chemistry Division, NRC, Ottawa, Canada K 1 A 0R9
and L. R. C. Barclay and J. M. Dust
Department of Chemistry, Mount Allison University, Sackville, New Brunswick, Canada

(Received 15 February 1980; accepted 8 December 1980)

Abstract

C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2}\), monoclinic, $P 2_{1} / c, a=4.870$ (2), $b=10.017$ (2), $c=16.431$ (4) $\AA, \beta=108.05$ (2) ${ }^{\circ}$ at room temperature, giving $Z=2$ and $D_{c}=1 \cdot 16 \mathrm{Mg}$ m^{-3}. The molecule is planar, utilizes a symmetry center and is relatively undistorted. The final R_{F} value is 3.8% for 708 observed data.

[^2]0567-7408/81/040978-02\$01.00

Introduction. The structures of a series of hindered azobenzenes have been determined (Le Page, Gabe, Barclay \& Dust, 1981). The diffraction intensities of a crystal, $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$, of the title compound were measured with graphite-monochromatized $\mathrm{Cu} K_{a}$ radiation using profile analysis (Grant \& Gabe, 1978) with the $\theta / 2 \theta$ scan technique. Three unique sets of 776 reflections for $2 \theta \leq 100^{\circ}$ were collected and averaged to give 708 with significant and 68 with insignificant
c) 1981 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35828 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Structure of Hindered Azobenzenes. III.
 \dagger NRC No. 19081.

